国民技术的主要产品是专用加密芯片, 如U盾, 各种充值卡, 银**, 会员卡上的芯片. 这些芯片上都会涉及到加解密. 所以通用芯片上也有硬件加密单元也就不为奇。
根据用户手册, N32G457上的支持的硬件加密算法有:
算法支持 |
DES/3DES、 AES、 SHA1/SHA224/SHA256、 SM1、 SM3、 SM4F、 SM7、 MD5、 CRC16/CRC32、 TRNG |
DES/3DES
这是对称加解密算法, 属于比较老的的算法种类, 目前已经在淘汰的边缘, 但是很多老产品还在使用. 之所以要淘汰, 是因为目前的硬件发展使得暴力**DES成本很低了.所谓对称算法是相对于非对称算法来说的, 对称算法中, 加解密过程是对称的, 密钥是通用的. 非对称算法中有私钥公钥之分. 非对称算法比对称算法要复杂, 所以手上拿的这个芯片没有相应的硬件加速单元, 成本和功能的平衡.
3DES是DES算法接连做三次, 增加暴力**成本, 其实也只是加个补丁. 目前有更好的算法供选择, 新产品中不建议使用DES/3DES算法.
AES
刚刚说到DES/3DES目前属于被淘汰的算法, AES就是主要替代算法. 理解为DES/3DES的升级版本即可.
SHA1/SHA224/SHA256/MD5
这都是哈希算法, 也叫散列算法, SHA1和MD5属于要淘汰的算法, 新产品不建议使用, 原因也是目前硬件暴力**的成本下降, 不安全.
SM1/SM4F/SM7
国家密码局颁布的商用密码, 都是对称算法, 用于商业金融领域, 简单理解为DES/3DES/AES的国内替代品即可.
SM3
SHA256的国内替代算法.
目前密码学界的共识是: SM系列算法安全度高于AES/SHA256系列. 但是AES/SH256是国际通用的, 遇到的可能性更大。另外, S * M 是 商用密码的商密二字的汉语拼音缩写。
这些算法都可以用软件来实现, 但是用硬件实现后性能要高一点. 比如DES-EBC简单数百行即可实现. (EBC是对称加密算法的模式代号).
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef unsigned char ubyte;
#define KEY_LEN 8
typedef ubyte simple_des_key_t[KEY_LEN];
const static ubyte PC1[] = {
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4
};
const static ubyte PC2[] = {
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
};
const static ubyte IP[] = {
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7
};
const static ubyte E[] = {
32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1
};
const static ubyte S[][64] = {
{
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
},
{
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
},
{
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
},
{
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
},
{
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
},
{
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
},
{
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
},
{
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
}
};
const static ubyte P[] = {
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25
};
const static ubyte IP2[] = {
40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25
};
const static ubyte SHIFTS[] = {
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};
typedef struct {
ubyte *data;
int len;
} String;
/*
* Transform a single nibble into a hex character
*
* in: a value < 0x10
*
* returns: the character that represents the nibble
*/
static char toHex(ubyte in) {
if (0x00 <= in && in < 0x0A) {
return '0' + in;
}
if (0x0A <= in && in <= 0x0F) {
return 'A' + in - 0x0A;
}
return 0;
}
/*
* Convert an array of bytes into a string
*
* ptr: the array of bytes
* len: the number of bytes
* out: a buffer allocated by the caller with enough space for 2*len+1 characters
*/
static void printBytes(const ubyte *ptr, int len, char *out) {
while (len-- > 0) {
*out++ = toHex(*ptr >> 4);
*out++ = toHex(*ptr & 0x0F);
ptr++;
}
*out = 0;
}
/*
* Gets the value of a bit in an array of bytes
*
* src: the array of bytes to index
* index: the desired bit to test the value of
*
* returns: the bit at the specified position in the array
*/
static int peekBit(const ubyte *src, int index) {
int cell = index / 8;
int bit = 7 - index % 8;
return (src[cell] & (1 << bit)) != 0;
}
/*
* Sets the value of a bit in an array of bytes
*
* dst: the array of bits to set a bit in
* index: the position of the bit to set
* value: the value for the bit to set
*/
static void pokeBit(ubyte *dst, int index, int value) {
int cell = index / 8;
int bit = 7 - index % 8;
if (value == 0) {
dst[cell] &= ~(1 << bit);
} else {
dst[cell] |= (1 << bit);
}
}
/*
* Transforms one array of bytes by shifting the bits the specified number of positions
*
* src: the array to shift bits from
* len: the length of the src array
* times: the number of positions that the bits should be shifted
* dst: a bytes array allocated by the caller to store the shifted values
*/
static void shiftLeft(const ubyte *src, int len, int times, ubyte *dst) {
int i, t;
for (i = 0; i <= len; ++i) {
pokeBit(dst, i, peekBit(src, i));
}
for (t = 1; t <= times; ++t) {
int temp = peekBit(dst, 0);
for (i = 1; i <= len; ++i) {
pokeBit(dst, i - 1, peekBit(dst, i));
}
pokeBit(dst, len - 1, temp);
}
}
/*
* Calculates the sub keys to be used in processing the messages
*
* key: the array of bytes representing the key
* ks: the subkeys that have been allocated by the caller
*/
typedef ubyte subkey_t[17][6]; /* 17 sets of 48 bits */
static void getSubKeys(const simple_des_key_t key, subkey_t ks) {
ubyte c[17][7]; /* 56 bits */
ubyte d[17][4]; /* 28 bits */
ubyte kp[7];
int i, j;
/* intialize */
memset(c, 0, sizeof(c));
memset(d, 0, sizeof(d));
memset(ks, 0, sizeof(subkey_t));
/* permute 'key' using table PC1 */
for (i = 0; i < 56; ++i) {
pokeBit(kp, i, peekBit(key, PC1[i] - 1));
}
/* split 'kp' in half and process the resulting series of 'c' and 'd' */
for (i = 0; i < 28; ++i) {
pokeBit(c[0], i, peekBit(kp, i));
pokeBit(d[0], i, peekBit(kp, i + 28));
}
/* shift the components of c and d */
for (i = 1; i < 17; ++i) {
shiftLeft(c[i - 1], 28, SHIFTS[i - 1], c[i]);
shiftLeft(d[i - 1], 28, SHIFTS[i - 1], d[i]);
}
/* merge 'd' into 'c' */
for (i = 1; i < 17; ++i) {
for (j = 28; j < 56; ++j) {
pokeBit(c[i], j, peekBit(d[i], j - 28));
}
}
/* form the sub-keys and store them in 'ks'
* permute 'c' using table PC2 */
for (i = 1; i < 17; ++i) {
for (j = 0; j < 48; ++j) {
pokeBit(ks[i], j, peekBit(c[i], PC2[j] - 1));
}
}
}
/*
* Function used in processing the messages
*
* r: an array of bytes to be processed
* ks: one of the subkeys to be used for processing
* sp: output from the processing
*/
static void f(ubyte *r, ubyte *ks, ubyte *sp) {
ubyte er[6]; /* 48 bits */
ubyte sr[4]; /* 32 bits */
int i;
/* initialize */
memset(er, 0, sizeof(er));
memset(sr, 0, sizeof(sr));
/* permute 'r' using table E */
for (i = 0; i < 48; ++i) {
pokeBit(er, i, peekBit(r, E[i] - 1));
}
/* xor 'er' with 'ks' and store back into 'er' */
for (i = 0; i < 6; ++i) {
er[i] ^= ks[i];
}
/* process 'er' six bits at a time and store resulting four bits in 'sr' */
for (i = 0; i < 8; ++i) {
int j = i * 6;
int b[6];
int k, row, col, m, n;
for (k = 0; k < 6; ++k) {
b[k] = peekBit(er, j + k) != 0 ? 1 : 0;
}
row = 2 * b[0] + b[5];
col = 8 * b[1] + 4 * b[2] + 2 * b[3] + b[4];
m = S[i][row * 16 + col]; /* apply table s */
n = 1;
while (m > 0) {
int p = m % 2;
pokeBit(sr, (i + 1) * 4 - n, p == 1);
m /= 2;
n++;
}
}
/* permute sr using table P */
for (i = 0; i < 32; ++i) {
pokeBit(sp, i, peekBit(sr, P[i] - 1));
}
}
/*
* Processing of block of the message
*
* message: an 8 byte block from the message
* ks: the subkeys to use in processing
* ep: space for an encoded 8 byte block allocated by the caller
*/
static void processMessage(const ubyte *message, subkey_t ks, ubyte *ep) {
ubyte left[17][4]; /* 32 bits */
ubyte right[17][4]; /* 32 bits */
ubyte mp[8]; /* 64 bits */
ubyte e[8]; /* 64 bits */
int i, j;
/* permute 'message' using table IP */
for (i = 0; i < 64; ++i) {
pokeBit(mp, i, peekBit(message, IP[i] - 1));
}
/* split 'mp' in half and process the resulting series of 'l' and 'r */
for (i = 0; i < 32; ++i) {
pokeBit(left[0], i, peekBit(mp, i));
pokeBit(right[0], i, peekBit(mp, i + 32));
}
for (i = 1; i < 17; ++i) {
ubyte fs[4]; /* 32 bits */
memcpy(left[i], right[i - 1], 4);
f(right[i - 1], ks[i], fs);
for (j = 0; j < 4; ++j) {
left[i - 1][j] ^= fs[j];
}
memcpy(right[i], left[i - 1], 4);
}
/* amalgamate r[16] and l[16] (in that order) into 'e' */
for (i = 0; i < 32; ++i) {
pokeBit(e, i, peekBit(right[16], i));
}
for (i = 32; i < 64; ++i) {
pokeBit(e, i, peekBit(left[16], i - 32));
}
/* permute 'e' using table IP2 ad return result as a hex string */
for (i = 0; i < 64; ++i) {
pokeBit(ep, i, peekBit(e, IP2[i] - 1));
}
}
/*
* Encrypts a message using DES
*
* key: the key to use to encrypt the message
* message: the message to be encrypted
* len: the length of the message
*
* returns: a paring of dynamically allocated memory for the encoded message,
* and the length of the encoded message.
* the caller will need to free the memory after use.
*/
String encrypt(const simple_des_key_t key, const ubyte *message, int len) {
String result = { 0, 0 };
subkey_t ks;
ubyte padByte;
int i;
getSubKeys(key, ks);
padByte = 8 - len % 8;
result.len = len + padByte;
result.data = (ubyte*)malloc(result.len);
memcpy(result.data, message, len);
memset(&result.data[len], padByte, padByte);
for (i = 0; i < result.len; i += 8) {
processMessage(&result.data[i], ks, &result.data[i]);
}
return result;
}
/*
* Decrypts a message using DES
*
* key: the key to use to decrypt the message
* message: the message to be decrypted
* len: the length of the message
*
* returns: a paring of dynamically allocated memory for the decoded message,
* and the length of the decoded message.
* the caller will need to free the memory after use.
*/
String decrypt(const simple_des_key_t key, const ubyte *message, int len) {
String result = { 0, 0 };
subkey_t ks;
int i, j;
ubyte padByte;
getSubKeys(key, ks);
/* reverse the subkeys */
for (i = 1; i < 9; ++i) {
for (j = 0; j < 6; ++j) {
ubyte temp = ks[i][j];
ks[i][j] = ks[17 - i][j];
ks[17 - i][j] = temp;
}
}
result.data = (ubyte*)malloc(len);
memcpy(result.data, message, len);
result.len = len;
for (i = 0; i < result.len; i += 8) {
processMessage(&result.data[i], ks, &result.data[i]);
}
padByte = result.data[len - 1];
result.len -= padByte;
return result;
}
/*
* Convienience method for showing the round trip processing of a message
*/
void driver(const simple_des_key_t key, const ubyte *message, int len) {
String encoded, decoded;
char buffer[128];
printBytes(key, KEY_LEN, buffer);
printf("Key : %s\n", buffer);
printBytes(message, len, buffer);
printf("Message : %s\n", buffer);
encoded = encrypt(key, message, len);
printBytes(encoded.data, encoded.len, buffer);
printf("Encoded : %s\n", buffer);
decoded = decrypt(key, encoded.data, encoded.len);
printBytes(decoded.data, decoded.len, buffer);
printf("Decoded : %s\n\n", buffer);
/* release allocated memory */
if (encoded.len > 0) {
free(encoded.data);
encoded.data = 0;
}
if (decoded.len > 0) {
free(decoded.data);
decoded.data = 0;
}
}
int test_soft_des_ebc(void) {
const simple_des_key_t keys[] = {
{0x13, 0x34, 0x57, 0x79, 0x9B, 0xBC, 0xDF, 0xF1},
{0x0E, 0x32, 0x92, 0x32, 0xEA, 0x6D, 0x0D, 0x73},
{0x0E, 0x32, 0x92, 0x32, 0xEA, 0x6D, 0x0D, 0x73}
};
const ubyte message1[] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF };
const ubyte message2[] = { 0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x87, 0x87 };
const ubyte message3[] = { 0x59, 0x6F, 0x75, 0x72, 0x20, 0x6C, 0x69, 0x70, 0x73, 0x20, 0x61, 0x72, 0x65, 0x20, 0x73, 0x6D, 0x6F, 0x6F, 0x74, 0x68, 0x65, 0x72, 0x20, 0x74, 0x68, 0x61, 0x6E, 0x20, 0x76, 0x61, 0x73, 0x65, 0x6C, 0x69, 0x6E, 0x65, 0x0D, 0x0A };
int len;
len = sizeof(message1) / sizeof(ubyte);
driver(keys[0], message1, len);
len = sizeof(message2) / sizeof(ubyte);
driver(keys[1], message2, len);
len = sizeof(message3) / sizeof(ubyte);
driver(keys[2], message3, len);
return 0;
}
硬件实现的上述算法, 主要是从性能和编程的易用性考虑. 官方提供的Demo中没有商密系列的例子, 如果要使用这些算法的硬件加速单元, 可以和我们客服联系。
还有上面的列表中说明支持TRNG
这个是真随机数发生器, 也是密码学算法中要使用的, 密码学中使用随机数, 既需要真随机也需要伪随机. 两者区别在于真随机数使用热噪音作为种子, 伪随机数使用特定的输入作为种子. 数学理论上没有真随机数, 类似于无法实现数学中的1/3分压,分频一样. 之所以称作TRNG, 是通过了一定的密码学测试标准, 国内/国际都有相应的测试标准.
uint32_t GetPseudoRand_U32(uint32_t *rand, uint32_t wordLen,uint32_t seed[2]);
uint32_t GetTrueRand_U32(uint32_t *rand, uint32_t wordLen);
有人可能会说C语言的库中也有随机数函数:
void srand(unsigned int _Seed);
int rand(void);
为何不直接使用? 原因还是密码学标准, 不管国际还是国内的密码学标准, 都不会依赖某个libc的随机数实现. libC中的实现只能用于最简单的场景, 如模拟输入测试等等.